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Multiple Soliton-Like Solutions for (2+1)-
Dimensional Dispersive Long-Wave Equations

Zhang Jiefang'
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By using a homogeneous balance method, multiple-solitonlike solutions of the
(2+1)-dimensional dispersive long-wave equation are constructed. The method
used here can be generalized to a wide class of nonlinear evolution equations.

Since soliton phenomena were first observed by Scott Russell in 1834
(Scott Russell, 1838) and the KAV equation was solved by the inverse scatter-
ing method by Gardner et al. (1967), the study of solitons and the related
issue of the construction of solutions to a wide class of nonlinear equations
has become one of the most exciting and extremely active areas of research.
Various methods for obtaining soliton solutions of the nonlinear evolution
equations have been proposed. Among these method are Hirota’s method
(Hirota, 1971), the Backlund transformation (Miura, 1978), the Darboux
transformation (Gu and Zhou, 1987) the Riemann method (Belinsky and
Zakharov (1978), Painlevé expansions (Cariello and Tabor, 1989), and several
‘ansatz’ methods (Wang, 1993; Malfleit, Lu et al., 1993). Recently Wang
introduced a homogeneous balance method (Wang, 1995, 1996a) and obtained
the solitary wave solutions of some nonlinear evolutions. In this paper, we
generalize the homogeneous balance method and give multiple-solitonlike
solutions of the (2+1)-dimensional dispersive long-wave equations (Boiti et
al., 1987)

Uy + N T uxtty + uy, = 0 (1)
N+ @n+u+yy)=0 (2)
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In order to solve equations (1) and (2), we suppose that the solution is
of the form

N,y 0 =fwy +a=f'wawe + ffwy +a (3)
u,p, ) =fw)y +b=fwe+ b 4)

where the functions M(x, y, f) and u (x, y, ) are expressed by a function f(w)
of one argument w (x, y, ) only, whereas f(w) and the constants a and b are
to be determined later. We will see that using the anastz (3) and (4), the
nonlinear and dispersive effects in Equations (1) and (2) can be partially
balanced. Therefore the only task in the following is to find the functions
f(w) and w (x, y, f) as well as the constants a and b such that (3) and (4)
actually satisfy (1) and (2).
From (3) and (4), we can easily deduce that

ur = f'waw; + f'wy (%)
ue = f'wi + 1w (6)
uy = f"wewy, + fwyy (7
Uy =f(3)wxwyw, + "(wywi + wawy + wawe) + f Wiy (8)
ey = fOwiwy + f"CQwavgy + wowe) + f Wiy )

Upy = f‘”wiwy + f(3)(3wxwywxx + 3w ,%wxy) + f"Bwawyy

+ 3wy + W) + M Wi (10)
ull =f(3)wxwyw, + "(wawy + wawy, + wows) + fwiy (11)
M = fPwiw, + f"(wywe + 2wany) + Wy (12)
N = f(4)w§wy + f(S)(3w§wxy + 3wawawy) + fCwiWiy

+ 3wy + W) + M Wi (13)

Substituting equations (5)—(13) into the left-hand side of equations (1) and
(2), we obtain

(f“” + f’f4) + f”z)wiwy + f“)(bw,%wy + 3wawax, + 3w§wxy + waw,wy)
+1'f ”(3w§ww + 2warywy) + [T (Waw, + wawy + wyw
+ 3wy + WWe + 3wy + 26wwy, + bwywyy)
+ £ WaWy + Wawey) + f (Woy + Warg + DWwiy) = 0 (14)
(fM) +f”2 + f’f“))w,%wy +f3) (bw,%wy + 3wawax, + 3w§wxy + waw,wy)

+ 1 Gwiws + 2wonwa) + £ (Wowe + wawy + wawe + 3wavy
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+ 3wy + Wi + 2bwawyy, + bwywie + aw 24w ,%)
+ f ,Z(Wxxww + Wxnyy) + f ,(Wrxy + W xxxy + wax‘y + awy + Wxx) (15)

The expressions (14) and (15) indicates that the nonlinear terms and the
highest order partial derivative terms in (1) and (2) have been partially
balanced. That is why we assume that the solution of (1) and (2) is of the
form of (3) and (4).

To simplify expressions (14) and (15), we further suppose that

SO ==+ (16)
and thus we have
1
Sr=- Ef’z (17
frr=— (18)

Making use of equations (16) and (18), we can simplify expressions (14)
and (15)

1(bw ,%wy + wowew, + wawyws) + fT(wow: + wawy + wowe + wawyy, +

WxWyy T WyWaee + DWWy + 2bwwyy) + f' (Wi + Wy + bwiy) =0 (19)

f (4)(bw ,%wy + wawewy, + wawuwy) + f(wows + wowy + wywn + wawsy
+ Wy + W + 20wwy, + bwawy + aw 2 4+ w,%) + T (Way + Wiy
+ bWy + awye + wy) =0 (20)

Setting the coefficients of /™, £, and f” in equations (19) and (20) to zero
yields a set of equations for w(x, y, ):

bw? wy + wawewy, + waw,w, = 0 (21)

WoW, + Wy + Wy + Wy + Wiy + WyWeo + DWWy,

+ 2bwwy = 0 (22)
Wiy + Wangy + wa.\y =0 (23)

WoyW; + Wawy + wywyy + Wiy + WaWyy

+ WWyo + 2bwawyy, + bwywy + awi+ wi=0 (24)

Wyt T Wiy T DWig + aWsy + Wy = 0 (25)
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Provided that
a=—1 (26)
we have

wawy (bwy+ we+w) =0 (27)
(bwy+ Wyt w)y=0 (28)
Wip(bwy + Wy + wo) + wi(bwy + Wi + W) + wi(bwy + we +w)y =0 (29)

From equations (27)-(29) we can get a special solution which satisfies
equation, (27)—(29) as follows:

wx, y, ) = + Z explk; (»)x + [(y) = (bki(y) + k51 (30)
~

where k;(y) and /;( y) are two arbitary functions of y.
Solving (17) yields
f=2hnw 3D
Now substituting equations (26), (30), and (31) into Eequations (3) and
(4), we obtain the multiple-solitonlike solutions of (1) and (2):

2; ki () explki (»)x + () = (b () + k()]

u +b (32)

1+ Z explli (y)x + L(y) — (bki() + ki (y)i]
~

n=1{-2 Z Z ki (DI explk;(»)x + [(y) = (bki(») + ki ()1]
J=H=
X explk; (»)x + () = (bki(y) + kF ()i}

X {1 + 21 explk; (»)x + 1(y) — (bki(p) + ki(y)a}
J=

+ {2+ 21 ki (D () explhi (n)x + L(y) — (bk; () + ki (»)el}
£

XA+ F exallg Oy +50) = GkO) + KON ()
2
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To understanding the meaning of solutions (32) and (33), we discuss
some special cases:
(i) For n = 1, we obtain

« =k tanh[i () + () = () + k%(y»z)] +h+104)

n = %kl(ynl(y) sech’ %(kl(y)x + () = (Bhi(y) + KO |~ BS)

Obviously, u is a bell-shaped soliton solution, and 1 is a kinklike soliton
solution.
(i1) For n = 2, we can construct the two-soliton solution as follows:

_ 2ki(v) exp(&)) + 2ka(y) exp(Ey)
1 + exp(&1) + exp(&a)

N = [2k(»)h(y) exp(&1) + 2ka(p)a(y) exp(Er)
+ 2(Li(y) — L(y)(k(y) = k() exp (& + &)]

+b (36)

X [1 + exp(&) + exp(&)]* — 1 (37)

where
& = ki(y)x — (bki(y) + ki(y)i (38)
& = ka(y)x — (bka(y) + k3(y))t (39)

(iii)) For n = 3, we can construct the three-soliton solution as follows:

u = [2ki(y) exp(&1) + 2ka(y) exp(&) + 2k3(y) exp(&3)]
X [1 + exp (&) + exp(&) + exp(&3)] ' + b (40)

N = [2k(»)h(y) exp&1) + 2ka(y)h(y) exp(&2) + 2k(y)i(y) exp(Es)
+ 2(L(y) — L(y)ki(p) —ka(p)) exp(&r + &)
+ 2(L(y) — B(y)(ka(y) — k() exp(&r + &)
+ 2(L(y) — B(y) k() — k() exp(&z + &3)]
X [1 + exp(&) + exp(&) + exp(&)] > — 1 (41)
where
& = ks(y)x — bka(y) + k3(»)i (42)

Moreover, we can construct other kinds of multiple-solitonlike solutions
as follows:
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(iv) For n = 2,
Y= 2k (V[exp(&)) + Kexp(& + &)1
1 + exp(C1) + exp(&) + Kexp(Gi + &)
2(K — Dk(Wb(y) exp(Cy + &)

+ b (43)

N7+ exp(@) + exp(C) + Kexp(G + OF (49
where
& = ki(y)x — (bki(y) + ki(»)t (45)
G =hy (46)
(v) Forn =3
2[ki(p)eCi + ks(p)eCs + Kki(y)eCi + G
_ + Kka(»)elo + &5
u_l+eg1+e§2+eg3+1<§1+§2+1<§2+g3+b “47)
2(k — D[ki(»)h(p)eCi + &
_ + k(Wh(y)els + &l
T F el + el + el + Kely + o + Kelo + G +1 (48)
where
G = ks(p)x — (bks(y) + k3 (»)t (49)

In summary, the multiple-solitonlike solution of the (24 1)-dimensional
dispersive long-wave equation can be obtained by using the homogeneous
balance method. The method used here, which is very coincise and basic,
can be conjecturally generalized to deal with other nonlinear evolution equa-
tions. We would like to study this in future work.
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